| 000 | 01923nam a22002297a 4500 | ||
|---|---|---|---|
| 008 | 210302b ||||| |||| 00| 0 eng d | ||
| 020 | _a9788126567935 | ||
| 041 | _aEnglish | ||
| 082 | _a658.4034 BAR | ||
| 100 | _aBari, Anasse | ||
| 245 |
_aPredictive analytics for dummies / _c Anasse Bari; Mohamed Chaouchi; Tommy Jung |
||
| 250 | _a2nd edition | ||
| 260 |
_aHoboken, NJ : _bWiley, _c2017. |
||
| 300 |
_aviii, 443 p. : _bill. ; _c24 cm. |
||
| 440 | _a--For dummies. | ||
| 500 | _a Includes index. "Learn to: Analyze structured and unstructured data ; Use algorithms and data analysis techniques ; Build clustering, classificaion and statistical models ; Apply predictive analytics to your website and marketing efforts"--Cover. | ||
| 505 | _a Introduction. -- pt. 1. Getting started with predictive analytics. Entering the arena ; Predictive analytics in the wild ; Exploring your data types and associated techniques ; Complexities of data -- pt. 2. Incorporating algorithms in your models. Applying models ; Identifying similarities in data ; Predicting the future using data classification -- pt. 3. Developing a roadmap. Convincing your management to adopt predictive analytics ; Preparing data ; Building a predictive model ; Visualization of analytical results -- pt. 4. Programming predictive analytics. Creating basic prediction examples ; Creating basic examples of unsupervised predictions ; Predictive modeling with R ; Avoiding analysis traps ; Targeting big data -- pt. 5. The part of tens. Ten reasons to implement predictive analytics ; Ten steps to build a predictive analytic model. | ||
| 650 |
_aDecision making -- Data processing. _aDecision making -- Mathematical models. _aManagement -- Data processing. _aManagement -- Mathematical models. _aData mining. _aBig data. |
||
| 700 | _aChaouchi, Mohamed -- author | ||
| 700 | _aJung, Tommy -- author | ||
| 942 | _c1 | ||
| 999 |
_c14856 _d14856 |
||